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Languages

Definition
A language L is a set of strings over ⌃. In other words L ✓ ⌃

⇤.

Standard set operations apply to languages.

For languages A,B the concatenation of A,B is
AB = {xy | x 2 A, y 2 B}.
For languages A,B, their union is A [ B, intersection is
A \ B, and di↵erence is A \ B (also written as A � B).

For language A ✓ ⌃
⇤ the complement of A is Ā = ⌃

⇤ \ A.
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Exponentiation, Kleene star etc

Definition
For a language L ✓ ⌃

⇤ and n 2 N, define Ln inductively as follows.

Ln
=

⇢
{✏} if n = 0

L·(Ln�1
) if n > 0

And define L⇤
= [n�0Ln, and L+

= [n�1Ln
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Exercise

Problem
Answer the following questions taking A,B ✓ {0, 1}⇤.

1 Is ✏ = {✏}? Is ; = {✏}?
2 What is ;·A? What is A·;?
3 What is {✏}·A? And A·{✏}?
4 If |A| = 2 and |B| = 3, what is |A·B|?
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Exercise

Problem
Consider languages over ⌃ = {0, 1}.

1 What is ;0?
2 If |L| = 2, then what is |L4|?
3 What is ;⇤, {✏}⇤, ✏⇤?
4 For what L is L⇤ finite?
5 What is ;+, {✏}+, ✏+?
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Languages and Computation

What are we interested in computing? Mostly functions.

Informal defintion: An algorithm A computes a function
f : ⌃

⇤ ! ⌃
⇤ if for all w 2 ⌃

⇤ the algorithm A on input w
terminates in a finite number of steps and outputs f (w).

Examples of functions:

Numerical functions: length, addition, multiplication, division etc

Given graph G and s, t find shortest paths from s to t
Given program M check if M halts on empty input
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Languages and Computation

Definition
A function f over ⌃⇤ is a boolean if f : ⌃

⇤ ! {0, 1}.

Observation: There is a bijection between boolean functions and
languages.

Given boolean function f : ⌃
⇤ ! {0, 1} define language

Lf = {w 2 ⌃
⇤ | f (w) = 1}

Given language L ✓ ⌃
⇤ define boolean function

f : ⌃
⇤ ! {0, 1} as follows: f (w) = 1 if w 2 L and

f (w) = 0 otherwise.
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Language recognition problem

Definition
For a language L ✓ ⌃

⇤ the language recognition problem associate
with L is the following: given w 2 ⌃

⇤, is w 2 L?

Equivalent to the problem of “computing” the function fL.
Language recognition is same as boolean function computation

How di�cult is a function f to compute? How di�cult is the
recognizing Lf ?

Why two di↵erent views? Helpful in understanding di↵erent aspects?
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How many languages are there?

Recall:

Definition
An set A is countably infinite if there is a bijection f between the
natural numbers and A.

Theorem
⌃

⇤ is countably infinite for every finite ⌃.

The set of all languages is P(⌃⇤
) the power set of ⌃⇤

Theorem (Cantor)
P(⌃⇤

) is not countably infinite for any finite ⌃.
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Cantor’s diagonalization argument

Theorem (Cantor)
P(N) is not countably infinite.

Suppose P(N) is countable infinite. Let S1, S2, . . . , be an
enumeration of all subsets of numbers.

Let D be the following diagonal subset of numbers.

D = {i | i 62 Si}

Since D is a set of numbers, by assumption, D = Sj for some j .
Question: Is j 2 D?

Nikita Borisov (UIUC) CS/ECE 374 31 Fall 2019 31 / 33



Consequences for Computation

How many C programs are there? The set of C programs is
countably infinite since each of them can be represented as a
string over a finite alphabet.

How many languages are there? Uncountably many!

Hence some (in fact almost all!) languages/boolean functions
do not have any C program to recognize them.

Questions:

Maybe interesting languages/functions have C programs and
hence computable. Only uninteresting langues uncomputable?

Why should C programs be the definition of computability?

Ok, there are di�cult problems/languages. what languages are
computable and which have e�cient algorithms?
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Easy languages

Definition
A language L ✓ ⌃

⇤ is finite if |L| = n for some integer n.

Exercise: Prove the following.

Theorem
The set of all finite languages is countably infinite.
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Part I

Regular Languages
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Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet ⌃ is defined
inductively as:

; is a regular language

{✏} is a regular language

{a} is a regular language for each a 2 ⌃; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 [ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L⇤ = [n�0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2019 3 / 16



Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet ⌃ is defined
inductively as:

; is a regular language

{✏} is a regular language

{a} is a regular language for each a 2 ⌃; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 [ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L⇤ = [n�0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2019 3 / 16



Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet ⌃ is defined
inductively as:

; is a regular language

{✏} is a regular language

{a} is a regular language for each a 2 ⌃; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 [ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L⇤ = [n�0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2019 3 / 16



Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet ⌃ is defined
inductively as:

; is a regular language

{✏} is a regular language

{a} is a regular language for each a 2 ⌃; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 [ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L⇤ = [n�0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2019 3 / 16



Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet ⌃ is defined
inductively as:

; is a regular language

{✏} is a regular language

{a} is a regular language for each a 2 ⌃; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 [ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L⇤ = [n�0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2019 3 / 16



Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet ⌃ is defined
inductively as:

; is a regular language

{✏} is a regular language

{a} is a regular language for each a 2 ⌃; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 [ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L⇤ = [n�0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2019 3 / 16



Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet ⌃ is defined
inductively as:

; is a regular language

{✏} is a regular language

{a} is a regular language for each a 2 ⌃; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 [ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L⇤ = [n�0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2019 3 / 16



Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet ⌃ is defined
inductively as:

; is a regular language

{✏} is a regular language

{a} is a regular language for each a 2 ⌃; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 [ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L⇤ = [n�0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2019 3 / 16



Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a, abaab, aba}. L = {w | |w |  100}. Why?
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More Examples

{w | w is a keyword in Python program}
{w | w is a valid date of the form mm/dd/yy}
{w | w describes a valid Roman numeral}
{I , II , III , IV ,V ,VI ,VII ,VIII , IX ,X ,XI , . . .}.
{w | w contains ”CS374” as a substring}.
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Part II

Regular Expressions

Nikita Borisov (UIUC) CS/ECE 374 6 Fall 2019 6 / 16



xkcd

https://xkcd.com/208/
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Regular Expressions

A way to denote regular languages

simple patterns to describe related strings

useful in
text search (editors, Unix/grep, emacs)
compilers: lexical analysis
compact way to represent interesting/useful languages
dates back to 50’s: Stephen Kleene
who has a star named after him.
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Inductive Definition

A regular expression r over an alphabhe ⌃ is one of the following:
Base cases:

; denotes the language ;
✏ denotes the language {✏}.
a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

(r1 + r2) denotes the language R1 [ R2

(r1r2) denotes the language R1R2

(r1)⇤ denotes the language R⇤
1

Nikita Borisov (UIUC) CS/ECE 374 9 Fall 2019 9 / 16



Inductive Definition

A regular expression r over an alphabhe ⌃ is one of the following:
Base cases:

; denotes the language ;
✏ denotes the language {✏}.
a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

(r1 + r2) denotes the language R1 [ R2

(r1r2) denotes the language R1R2

(r1)⇤ denotes the language R⇤
1

Nikita Borisov (UIUC) CS/ECE 374 9 Fall 2019 9 / 16



Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

; regular ; denotes ;
{✏} regular ✏ denotes {✏}
{a} regular for a 2 ⌃ a denote {a}
R1 [ R2 regular if both are r1 + r2 denotes R1 [ R2

R1R2 regular if both are r1r2 denotes R1R2

R⇤ is regular if R is r⇤ denote R⇤

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language
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Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).
Omit parenthesis by adopting precedence order: ⇤, concat, +.
Example: rs⇤ + t = (r(s⇤)) + t
Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.
Superscript +. For convenience, define r+ = rr⇤. Hence if
L(r) = R then L(r+) = R+.
Other notation: r + s, r [ s, r |s all denote union. rs is
sometimes written as r·s.
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Skills

Given a language L “in mind” (say an English description) we
would like to write a regular expression for L (if possible)

Given a regular expression r we would like to “understand” L(r)
(say by giving an English description)
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Understanding regular expressions

(0 + 1)⇤: set of all strings over {0, 1}

(0 + 1)⇤001(0 + 1)⇤: strings with 001 as substring

0⇤ + (0⇤10⇤10⇤10⇤)⇤: strings with number of 1’s divisible by 3

;0: {}
(✏ + 1)(01)⇤(✏ + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(✏ + 0)(1 + 10)⇤: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2019 13 / 16



Understanding regular expressions

(0 + 1)⇤: set of all strings over {0, 1}
(0 + 1)⇤001(0 + 1)⇤:

strings with 001 as substring

0⇤ + (0⇤10⇤10⇤10⇤)⇤: strings with number of 1’s divisible by 3

;0: {}
(✏ + 1)(01)⇤(✏ + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(✏ + 0)(1 + 10)⇤: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2019 13 / 16



Understanding regular expressions

(0 + 1)⇤: set of all strings over {0, 1}
(0 + 1)⇤001(0 + 1)⇤: strings with 001 as substring

0⇤ + (0⇤10⇤10⇤10⇤)⇤: strings with number of 1’s divisible by 3

;0: {}
(✏ + 1)(01)⇤(✏ + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(✏ + 0)(1 + 10)⇤: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2019 13 / 16



Understanding regular expressions

(0 + 1)⇤: set of all strings over {0, 1}
(0 + 1)⇤001(0 + 1)⇤: strings with 001 as substring

0⇤ + (0⇤10⇤10⇤10⇤)⇤:

strings with number of 1’s divisible by 3

;0: {}
(✏ + 1)(01)⇤(✏ + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(✏ + 0)(1 + 10)⇤: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2019 13 / 16



Understanding regular expressions

(0 + 1)⇤: set of all strings over {0, 1}
(0 + 1)⇤001(0 + 1)⇤: strings with 001 as substring

0⇤ + (0⇤10⇤10⇤10⇤)⇤: strings with number of 1’s divisible by 3

;0: {}
(✏ + 1)(01)⇤(✏ + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(✏ + 0)(1 + 10)⇤: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2019 13 / 16



Understanding regular expressions

(0 + 1)⇤: set of all strings over {0, 1}
(0 + 1)⇤001(0 + 1)⇤: strings with 001 as substring

0⇤ + (0⇤10⇤10⇤10⇤)⇤: strings with number of 1’s divisible by 3

;0:

{}
(✏ + 1)(01)⇤(✏ + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(✏ + 0)(1 + 10)⇤: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2019 13 / 16



Understanding regular expressions

(0 + 1)⇤: set of all strings over {0, 1}
(0 + 1)⇤001(0 + 1)⇤: strings with 001 as substring

0⇤ + (0⇤10⇤10⇤10⇤)⇤: strings with number of 1’s divisible by 3

;0: {}

(✏ + 1)(01)⇤(✏ + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(✏ + 0)(1 + 10)⇤: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2019 13 / 16



Understanding regular expressions

(0 + 1)⇤: set of all strings over {0, 1}
(0 + 1)⇤001(0 + 1)⇤: strings with 001 as substring

0⇤ + (0⇤10⇤10⇤10⇤)⇤: strings with number of 1’s divisible by 3

;0: {}
(✏ + 1)(01)⇤(✏ + 0):

alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(✏ + 0)(1 + 10)⇤: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2019 13 / 16



Understanding regular expressions

(0 + 1)⇤: set of all strings over {0, 1}
(0 + 1)⇤001(0 + 1)⇤: strings with 001 as substring

0⇤ + (0⇤10⇤10⇤10⇤)⇤: strings with number of 1’s divisible by 3

;0: {}
(✏ + 1)(01)⇤(✏ + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(✏ + 0)(1 + 10)⇤: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2019 13 / 16



Understanding regular expressions

(0 + 1)⇤: set of all strings over {0, 1}
(0 + 1)⇤001(0 + 1)⇤: strings with 001 as substring

0⇤ + (0⇤10⇤10⇤10⇤)⇤: strings with number of 1’s divisible by 3

;0: {}
(✏ + 1)(01)⇤(✏ + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(✏ + 0)(1 + 10)⇤:

strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2019 13 / 16


