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Languages

Definition
A language L is a set of strings over X. In other words L C X*.
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Languages

Definition
A language L is a set of strings over X. In other words L C X*.

—

Standard set operations apply to languages.
e For languages A, B the concatenation of A, B is
AB = {xy | x € A,y € B}.
@ For languages A, B, their union is A U B, intersection is
A N B, and difference is A\ B (also written as A — B).

e For language A C X* the complement of Ais A = X* \ A.
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Exponentiation, Kleene star etc

Definition |

For a language L C X* and n € N, define L" inductively as follows.

n_ | {€} ifn=0
L —{ Le(L"™1) ifn>0

And define L* = U,>oL", and Lt = Up>1L"
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Exercise

Answer the following questions taking A, B C {0,1}*.
Q lIse={e}?Is0={e}?
Q@ What isDe A? What is Ae()?

© What is {e}*A? And Ae{€}?
Q If|A| =2 and |B| =3, what is |[AeB|?
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Exercise

Consider languages over ¥ = {0, 1}.
Q What is 0°7
Q If|L| = 2, then what is |L*|?
© What is 0*, {e}*, €7
© For what L is L* finite?

Q@ What is 0F, {e}*, et?
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Languages and Computation

What are we interested in computing? Mostly functions.

Informal defintion: An algorithm A computes a function
f:X* — X*if for all w € X* the algorithm A on input w
terminates in a finite number of steps and outputs f(w).

Examples of functions:
@ Numerical functions: length, addition, multiplication, division etc
@ Given graph G and s, t find shortest paths from s to t
@ Given program M check if M halts on empty input
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Languages and Computation

Definition
A function f over X* is a boolean if f : ¥* — {0, 1}.
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Languages and Computation

Definition

A function f over X* is a boolean if f : ¥* — {0, 1}.

Observation: There is a bijection between boolean functions and
languages.

@ Given boolean function f : £* — {0, 1} define language
L={we x| f(w)=1}
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Languages and Computation

Definition

A function f over X* is a boolean if f : ¥* — {0, 1}.

Observation: There is a bijection between boolean functions and
languages.
@ Given boolean function f : £* — {0, 1} define language
L={we x| f(w)=1}
@ Given language L C X* define boolean function
f:x* — {0,1} as follows: f(w) =1if w € L and
f(w) = 0 otherwise.
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Language recognition problem

Definition

For a language L C X* the language recognition problem associate
with L is the following: given w € X* is w € L?
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Language recognition problem

Definition

For a language L C X* the language recognition problem associate
with L is the following: given w € X* is w € L?

@ Equivalent to the problem of “computing” the function f;.
@ Language recognition is same as boolean function computation

@ How difficult is a function f to compute? How difficult is the
recognizing L¢?
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Language recognition problem

Definition

For a language L C X* the language recognition problem associate
with L is the following: given w € X* is w € L?

@ Equivalent to the problem of “computing” the function f;.
@ Language recognition is same as boolean function computation

@ How difficult is a function f to compute? How difficult is the
recognizing L¢?

Why two different views? Helpful in understanding different aspects?
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How many languages are there?

Recall:

Definition
An set A is countably infinite if there is a bijection f between the
natural numbers and A.

2 * js countably infinite for every finite X. l

The set of all languages is P(X*) the power set of X*
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How many languages are there?

Recall:

Definition
An set A is countably infinite if there is a bijection f between the
natural numbers and A.

2 * js countably infinite for every finite X.

The set of all languages is P(X*) the power set of X*

Theorem (Cantor)
P(X*) is not countably infinite for any finite X.
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Cantor’s diagonalization argument

Theorem (Cantor)

P(N) is not countably infinite.

@ Suppose P(N) is countable infinite. Let S;,S,,..., be an
enumeration of all subsets of numbers.

@ Let D be the following diagonal subset of numbers.

D={i|i¢S}

@ Since D is a set of numbers, by assumption, D = §; for some j.
@ Question: Is j € D?
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Consequences for Computation

@ How many C programs are there? The set of C programs is
countably infinite since each of them can be represented as a
string over a finite alphabet.

@ How many languages are there? Uncountably many!
@ Hence some (in fact almost all!) languages/boolean functions
do not have any C program to recognize them.

Questions:
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Consequences for Computation

@ How many C programs are there? The set of C programs is
countably infinite since each of them can be represented as a
string over a finite alphabet.

@ How many languages are there? Uncountably many!
@ Hence some (in fact almost all!) languages/boolean functions
do not have any C program to recognize them.
Questions:
@ Maybe interesting languages/functions have C programs and
hence computable. Only uninteresting langues uncomputable?
@ Why should C programs be the definition of computability?

@ Ok, there are difficult problems/languages. what languages are
computable and which have efficient algorithms?
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Easy languages

Definition

A language L C X* is finite if |L| = n for some integer n.

Exercise: Prove the following.

The set of all finite languages is countably infinite. \
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Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

@ ( is a regular language
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Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

@ ( is a regular language

o {e€} is a regular language
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Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

@ ( is a regular language
o {e€} is a regular language

e {a} is a regular language for each a € X; here we are
interpreting a as a string of length 1
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Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

@ ( is a regular language
o {e€} is a regular language

e {a} is a regular language for each a € X; here we are
interpreting a as a string of length 1

o If Ly, Ly are regular then Ly U L, is regular
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Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

@ ( is a regular language
o {e€} is a regular language

e {a} is a regular language for each a € X; here we are
interpreting a as a string of length 1

o If Ly, Ly are regular then Ly U L, is regular

o If Ly, Ly are regular then LyL; is regular
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Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

@ ( is a regular language
o {e€} is a regular language

e {a} is a regular language for each a € X; here we are
interpreting a as a string of length 1

o If Ly, Ly are regular then Ly U L, is regular
o If Ly, Ly are regular then LyL; is regular
o If Lis regular, then L* = U,>oL" is regular
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Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

@ ( is a regular language
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e {a} is a regular language for each a € X; here we are
interpreting a as a string of length 1

o If Ly, Ly are regular then Ly U L, is regular
o If Ly, Ly are regular then LyL; is regular
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Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

@ ( is a regular language
o {e€} is a regular language

o {a} is a regular language for each a € X; here we are
interpreting a as a string of length 1

o If Ly, Ly are regular then Ly U L, is regular
o If Ly, Ly are regular then LyL; is regular
o If Lis regular, then L* = U,>oL" is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.
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Some simple regular languages
If w is a string then L = {w} is regular. \

Example: {aba} or {abbabbab}. Why?
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Some simple regular languages
If w is a string then L = {w} is regular. l

Example: {aba} or {abbabbab}. Why?

Every finite language L is regular. l

Examples: L = {a, abaab, aba}. L = {w | |w| < 100}. Why?
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More Examples

e {w | wis a keyword in Python program}

o {w | wis a valid date of the form mm/dd/yy}

o {w | w describes a valid Roman numeral}
{0,010, 11,1V, V, VI, VIL, VIIL IX, X, X1, . . .}.

o {w | w contains "CS374" as a substring}.
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OH NO! THE KILLER | | BUT TO FIND THEM WED HAVE T0 SEARCH
MUST HAVE FOLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR

T KNOW REGULAR
EXPRESSIONS .

https://xkcd.com/208/
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https://xkcd.com/208/

Regular Expressions

A way to denote regular languages

@ simple patterns to describe related strings

@ useful in

text search (editors, Unix/grep, emacs)

compilers: lexical analysis

compact way to represent interesting/useful languages
dates back to 50's: Stephen Kleene

who has a star named after him.
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Inductive Definition

A regular expression r over an alphabhe X is one of the following:
Base cases:

@ () denotes the language 0
@ € denotes the language {€}.
@ a denote the language {a}.
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Inductive Definition

A regular expression r over an alphabhe X is one of the following:
Base cases:

@ () denotes the language 0
@ € denotes the language {€}.
@ a denote the language {a}.

Inductive cases: If r; and r; are regular expressions denoting
languages R; and R; respectively then,

@ (r1 + r2) denotes the language R; U R,
@ (rirp) denotes the language R R»
@ (r1)* denotes the language Ry
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Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

O regular (0 denotes 0

{€e} regular € denotes {€}

{a} regular for a € X a denote {a}

R; U R, regular if both are r1 + ry denotes Ry U Ry
R;1 R; regular if both are riry denotes R Ry

R* is regular if R is r* denote R*

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language
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Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
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Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions r; and ry are equivalent if
L(I’l) = L(rz).

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 11/16



Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions r; and ry are equivalent if
L(I’l) = L(rz).

@ Omit parenthesis by adopting precedence order: *, concat, +.
Example: rs* +t = (r(s*)) + t
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Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions r; and ry are equivalent if
L(I’l) = L(rz).

@ Omit parenthesis by adopting precedence order: *, concat, +.
Example: rs* +t = (r(s*)) + t

@ Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r+s+t=r+(s+t)=(r+s)+t
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Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions r; and ry are equivalent if
L(I’l) = L(rz).

@ Omit parenthesis by adopting precedence order: *, concat, +.
Example: rs* +t = (r(s*)) + t

@ Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r+s+t=r+(s+t)=(r+s)+t

@ Superscript 4. For convenience, define r* = rr*. Hence if
L(r) = R then L(r*) = R™.
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Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions ry and rp are equivalent if

L(I’l) = L(rz).

Omit parenthesis by adopting precedence order: *, concat, +.
Example: rs* +t = (r(s*)) + t

Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r+s+t=r+(s+t)=(r+s)+t

Superscript 4. For convenience, define r* = rr*. Hence if
L(r) = R then L(r*) = R™.

Other notation: r + s, r Uss, r|s all denote union. rs is
sometimes written as res.
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Skills

@ Given a language L “in mind” (say an English description) we
would like to write a regular expression for L (if possible)
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Skills

@ Given a language L “in mind” (say an English description) we
would like to write a regular expression for L (if possible)

@ Given a regular expression r we would like to “understand” L(r)
(say by giving an English description)
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Understanding regular expressions

@ (0 4 1)*: set of all strings over {0,1}
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Understanding regular expressions

@ (0 4 1)*: set of all strings over {0,1}
e (0+1)*001(0 + 1)*:
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Understanding regular expressions

@ (0 4 1)*: set of all strings over {0,1}
@ (0+ 1)*001(0 + 1)*: strings with 001 as substring
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Understanding regular expressions

@ (0 4 1)*: set of all strings over {0,1}
@ (0+ 1)*001(0 + 1)*: strings with 001 as substring
e 0* + (0*10*10*10*)*:
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Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}
@ (0+ 1)*001(0 + 1)*: strings with 001 as substring
e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
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Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

@ (0+ 1)*001(0 + 1)*: strings with 001 as substring

e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
e (0:
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Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

@ (0+ 1)*001(0 + 1)*: strings with 001 as substring

e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}
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Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

@ (0+ 1)*001(0 + 1)*: strings with 001 as substring

e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

e (e+1)(01)*(e + 0):
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Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

@ (0+ 1)*001(0 + 1)*: strings with 001 as substring

e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

o (e + 1)(01)*(e + 0): alteranting Os and 1s. Alternatively, no
two consecutive Os and no two conescutive 1s
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Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

@ (0+ 1)*001(0 + 1)*: strings with 001 as substring

e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

o (e + 1)(01)*(e + 0): alteranting Os and 1s. Alternatively, no
two consecutive Os and no two conescutive 1s

o (e+0)(1+10)~
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